Research Article | Open Access
Volume 2023 |Article ID 0061 | https://doi.org/10.34133/plantphenomics.0061

Phenotyping Key Fruit Quality Traits in Olive Using RGB Images and Back Propagation Neural Networks

Giuseppe Montanaro ,1 Angelo Petrozza,2 Laura Rustioni,3 Francesco Cellini,2 and Vitale Nuzzo1

1Università degli Studi della Basilicata, 85100 Potenza, Italy
2ALSIA, Agenzia Lucana Sviluppo Innovazione in Agricoltura, Metapontum Agrobios Research Center, 75010 Metaponto, Italy
3Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy

Received 
12 Dec 2022
Accepted 
06 Jun 2023
Published
23 Jun 2023

Abstract

To predict oil and phenol concentrations in olive fruit, the combination of back propagation neural networks (BPNNs) and contact-less plant phenotyping techniques was employed to retrieve RGB image-based digital proxies of oil and phenol concentrations. Fruits of cultivars (×3) differing in ripening time were sampled (~10-day interval, ×2 years), pictured and analyzed for phenol and oil concentrations. Prior to this, fruit samples were pictured and images were segmented to extract the red (R), green (G), and blue (B) mean pixel values that were rearranged in 35 RGB-based colorimetric indexes. Three BPNNs were designed using as input variables (a) the original 35 RGB indexes, (b) the scores of principal components after a principal component analysis (PCA) pre-processing of those indexes, and (c) a reduced number (28) of the RGB indexes achieved after a sparse PCA. The results show that the predictions reached the highest mean R2 values ranging from 0.87 to 0.95 (oil) and from 0.81 to 0.90 (phenols) across the BPNNs. In addition to the R2, other performance metrics were calculated (root mean squared error and mean absolute error) and combined into a general performance indicator (GPI). The resulting rank of the GPI suggests that a BPNN with a specific topology might be designed for cultivars grouped according to their ripening period. The present study documented that an RGB-based image phenotyping can effectively predict key quality traits in olive fruit supporting the developing olive sector within a digital agriculture domain.

© 2019-2023   Plant Phenomics. All rights Reserved.  ISSN 2643-6515.

Back to top